廣西戴氏教育 來(lái)源:互聯(lián)網(wǎng) 時(shí)間:2021-06-08 19:25:32 點(diǎn)擊:3次
一種數(shù)學(xué)卷子中較先出現(xiàn)的就是選擇題,接下來(lái)就是填空題了,較后才是解答題,同時(shí)這三種類型的題目是構(gòu)成數(shù)學(xué)卷子的內(nèi)容,那么對(duì)于這三部分的題目同學(xué)們?cè)谄綍r(shí)的時(shí)候是怎樣解答的呢?在解答的時(shí)候有著怎樣的思路呢?數(shù)學(xué)的學(xué)習(xí)是一個(gè)思路的學(xué)習(xí),在學(xué)習(xí)的過(guò)程中同學(xué)們掌握了其中的內(nèi)容之后就能應(yīng)對(duì)各種類型的題目了,那么在今天的文章中我們就來(lái)學(xué)習(xí)關(guān)于數(shù)學(xué)的答題思路和相關(guān)的答題模板吧。
圖片來(lái)源于攝圖網(wǎng)
選擇填空
易錯(cuò)點(diǎn)歸納
九大模塊易混淆難記憶考點(diǎn)分析,如概率和頻率概念混淆、數(shù)列求和公式記憶錯(cuò)誤等,強(qiáng)化基礎(chǔ)知識(shí)點(diǎn)記憶,避開(kāi)因?yàn)橹R(shí)點(diǎn)失誤造成的客觀性解題錯(cuò)誤。
針對(duì)審題、解題思路不嚴(yán)謹(jǐn),如集合題型未考慮空集情況、函數(shù)問(wèn)題未考慮定義域等主觀性因素造成的失誤進(jìn)行專項(xiàng)訓(xùn)練。
答題方法
選擇題十大速解方法:排除法、增加條件法、以小見(jiàn)大法、極限法、關(guān)鍵點(diǎn)法、對(duì)稱法、小結(jié)論法、歸納法、感覺(jué)法、分析選項(xiàng)法;
填空題四大速解方法:直接法、特殊化法、數(shù)形結(jié)合法、等價(jià)轉(zhuǎn)化法。
解答題
專題一:三角變換與三角函數(shù)的性質(zhì)問(wèn)題
解題路線圖
①不同角化同角
②降冪擴(kuò)角
③化f(x)=Asin(ωx+φ)+h
④結(jié)合性質(zhì)求解。
構(gòu)建答題模板
①化簡(jiǎn):三角函數(shù)式的化簡(jiǎn),一般化成y=Asin(ωx+φ)+h的形式,即化為“一角、一次、一函數(shù)”的形式。
②整體代換:將ωx+φ看作一個(gè)整體,利用y=sin x,y=cos x的性質(zhì)確定條件。
③求解:利用ωx+φ的范圍求條件解得函數(shù)y=Asin(ωx+φ)+h的性質(zhì),寫(xiě)出結(jié)果。
④反思:反思回顧,查看關(guān)鍵點(diǎn),易錯(cuò)點(diǎn),對(duì)結(jié)果進(jìn)行估算,檢查規(guī)范性。
專題二:解三角形問(wèn)題
解題路線圖
(1) ①化簡(jiǎn)變形;②用余弦定理轉(zhuǎn)化為邊的關(guān)系;③變形證明。
(2) ①用余弦定理表示角;②用基本不等式求范圍;③確定角的取值范圍。
構(gòu)建答題模板
①定條件:即確定三角形中的已知和所求,在圖形中標(biāo)注出來(lái),然后確定轉(zhuǎn)化的方向。
②定工具:即根據(jù)條件和所求,合理選擇轉(zhuǎn)化的工具,實(shí)施邊角之間的互化。
③求結(jié)果。
④再反思:在實(shí)施邊角互化的時(shí)候應(yīng)注意轉(zhuǎn)化的方向,一般有兩種思路:一是全部轉(zhuǎn)化為邊之間的關(guān)系;二是全部轉(zhuǎn)化為角之間的關(guān)系,然后進(jìn)行恒等變形。
專題三:數(shù)列的通項(xiàng)、求和問(wèn)題
解題路線圖
①先求某一項(xiàng),或者找到數(shù)列的關(guān)系式。
②求通項(xiàng)公式。
③求數(shù)列和通式。
構(gòu)建答題模板
①找遞推:根據(jù)已知條件確定數(shù)列相鄰兩項(xiàng)之間的關(guān)系,即找數(shù)列的遞推公式。
②求通項(xiàng):根據(jù)數(shù)列遞推公式轉(zhuǎn)化為等差或等比數(shù)列求通項(xiàng)公式,或利用累加法或累乘法求通項(xiàng)公式。
③定方法:根據(jù)數(shù)列表達(dá)式的結(jié)構(gòu)特征確定求和方法(如公式法、裂項(xiàng)相消法、錯(cuò)位相減法、分組法等)
④寫(xiě)步驟:規(guī)范寫(xiě)出求和步驟。
⑤再反思:反思回顧,查看關(guān)鍵點(diǎn)、易錯(cuò)點(diǎn)及解題規(guī)范。
專題四:利用空間向量求角問(wèn)題
解題路線圖
①建立坐標(biāo)系,并用坐標(biāo)來(lái)表示向量。
②空間向量的坐標(biāo)運(yùn)算。
③用向量工具求空間的角和距離。
構(gòu)建答題模板
①找垂直:找出(或作出)具有公共交點(diǎn)的三條兩兩垂直的直線。
②寫(xiě)坐標(biāo):建立空間直角坐標(biāo)系,寫(xiě)出特征點(diǎn)坐標(biāo)。
③求向量:求直線的方向向量或平面的法向量。
④求夾角:計(jì)算向量的夾角。
⑤得結(jié)論:得到所求兩個(gè)平面所成的角或直線和平面所成的角。
專題五:圓錐曲線中的范圍問(wèn)題
解題路線圖
①設(shè)方程。
②解系數(shù)。
③得結(jié)論。
構(gòu)建答題模板
①提關(guān)系:從題設(shè)條件中提取不等關(guān)系式。
②找函數(shù):用一個(gè)變量表示目標(biāo)變量,代入不等關(guān)系式。
③得范圍:通過(guò)求解含目標(biāo)變量的不等式,得所求參數(shù)的范圍。
④再回顧:注意目標(biāo)變量的范圍所受題中其他因素的制約
專題六:解析幾何中的探索性問(wèn)題
解題路線圖
①一般先假設(shè)這種情況成立(點(diǎn)存在、直線存在、位置關(guān)系存在等)
②將上面的假設(shè)代入已知條件求解。
③得出結(jié)論。
構(gòu)建答題模板
①先假定:假設(shè)結(jié)論成立。
②再推理:以假設(shè)結(jié)論成立為條件,進(jìn)行推理求解。
③下結(jié)論:若推出合理結(jié)果,經(jīng)驗(yàn)證成立則肯。 定假設(shè);若推出矛盾則否定假設(shè)。
④再回顧:查看關(guān)鍵點(diǎn),易錯(cuò)點(diǎn)(特殊情況、隱含條件等),審視解題規(guī)范性。
專題七:離散型隨機(jī)變量的均值與方差
解題路線圖
(1) ①標(biāo)記事件;②對(duì)事件分解;③計(jì)算概率。
(2) ①確定ξ取值;②計(jì)算概率;③得分布列;④求數(shù)學(xué)期望。
構(gòu)建答題模板
①定元:根據(jù)已知條件確定離散型隨機(jī)變量的取值。
②定性:明確每個(gè)隨機(jī)變量取值所對(duì)應(yīng)的事件。
③定型:確定事件的概率模型和計(jì)算公式。
④計(jì)算:計(jì)算隨機(jī)變量取每一個(gè)值的概率。
⑤列表:列出分布列。
⑥求解:根據(jù)均值、方差公式求解其值。
專題八:函數(shù)的單調(diào)性、極值、較值問(wèn)題
解題路線圖
(1) ①先對(duì)函數(shù)求導(dǎo);②計(jì)算出某一點(diǎn)的斜率;③得出切線方程。
(2) ①先對(duì)函數(shù)求導(dǎo);②談?wù)搶?dǎo)數(shù)的正負(fù)性;③列表觀察原函數(shù)值;④得到原函數(shù)的單調(diào)區(qū)間和極值。
構(gòu)建答題模板
①求導(dǎo)數(shù):求f(x)的導(dǎo)數(shù)f′(x)。(注意f(x)的定義域)
②解方程:解f′(x)=0,得方程的根。
③列表格:利用f′(x)=0的根將f(x)定義域分成若干個(gè)小開(kāi)區(qū)間,并列出表格。
④得結(jié)論:從表格觀察f(x)的單調(diào)性、極值、較值等。
⑤再回顧:對(duì)需討論根的大小問(wèn)題要特殊注意,另外觀察f(x)的間斷點(diǎn)及步驟規(guī)范性。
以上的內(nèi)容就是秦學(xué)小編整理出來(lái)的關(guān)于數(shù)學(xué)方面的答題內(nèi)容和方法了。
免責(zé)聲明:①凡本站注明“本文來(lái)源:廣西戴氏教育”的所有文字、圖片和音視頻稿件,版權(quán)均屬本網(wǎng)所有,任何媒體、網(wǎng)站或個(gè)人未經(jīng)本網(wǎng)協(xié)議授權(quán)不得轉(zhuǎn)載、鏈接、轉(zhuǎn)貼或以其他方式復(fù)制發(fā)表。已經(jīng)本站協(xié)議 授權(quán)的媒體、網(wǎng)站,在下載使用時(shí)必須注明“稿件來(lái)源:廣西戴氏教育”,違者本站將依法追究責(zé)任。②本站注明稿件來(lái)源為其他媒體的文/圖等稿件均為轉(zhuǎn)載稿,本站轉(zhuǎn)載出于非商業(yè)性的教育和科研之目的,并不 意味著贊同其觀點(diǎn)或證實(shí)其內(nèi)容的真實(shí)性。如轉(zhuǎn)載稿涉及版權(quán)等問(wèn)題,請(qǐng)作者在兩周內(nèi)速來(lái)電或來(lái)函聯(lián)系。